Relative Performance of Semi-parametric Nonlinear Models in Forecasting Basis

نویسندگان

  • Gulcan Onel
  • Berna Karali
چکیده

Many risk management strategies, including hedging the price risk using forward or futures contracts require accurate forecasts of basis, i.e., spot price minus the futures price. Recent literature in this area has applied nonlinear time-series models, which are refinements of the linear autoregressive models that allow the parameters to transition from one regime to another. These parametric nonlinear models, however, involve complex estimation problems, and may diminish forecasting accuracy, especially in longer horizons. We propose using a semi-parametric, generalized additive model (GAM) that may improve the forecasting performance with its simplicity and flexibility while still accounting for nonlinearities in local prices and basis. Empirical results based on weekly futures and spot prices for North Carolina soybean and corn markets support evidence of nonlinear effects in basis. In general, generalized additive models seem to yield better forecasts of basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting GDP Growth Using ANN Model with Genetic Algorithm

Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...

متن کامل

An Effective Hybrid Semi-Parametric Regression Strategy for Rainfall Forecasting Combining Linear and Nonlinear Regression

Rainfall forecasting is an important research topic in disaster prevention and reduction. The characteristic of rainfall involves a rather complex systematic dynamics under the influence of different meteorological factors, including linear and nonlinear pattern. Recently, many approaches to improve forecasting accuracy have been introduced. Artificial neural network (ANN), which performs a non...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Semi-parametric estimation of the strategic goods (OPEC oil price)

In the global economy, crude oil is among the most important strategic goods that affects the performance of local and international markets. Prediction of the oil price has always been an important challenging topic in the global economy and producers and consumers have constantly been trying to improve their roll in the oil price changes and for many years OPEC has been one of the key players...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014